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Global Solution to the Relativistic Enskog Equation
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We give two hypotheses of the relativistic collision kernal and show the existence and
uniqueness of the global mild solution to the relativistic Enskog equation with the initial
data near the vacuum for a hard sphere gas.
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1. INTRODUCTION

We will show the existence and uniqueness of the global mild solution to the
relativistic Enskog equation with near-vacuum initial data for a hard sphere gas.
By using a similar derivation as for the relativistic Boltzmann equation,(4) the
relativistic Enskog equation can be obtained as follows (see Ref. 12):

∂ f

∂t
+ p

p0

∂ f

∂x
= Q( f ) (1.1)

where t ∈ [0,+∞), x ∈ R3, p ∈ R3, p0 = (1 + |p|2)1/2 and Q( f ) =
Q( f )(t, x, p) is the relativistic Enskog collision operator which is expressed by
the difference between the gain and loss terms respectively defined by

Q+( f )(t, x, p) = a2

p0

∫
R3

d3p1

p10

∫
S2+

dωF+( f ) f (t, x, p′) f (t, x + aω, p′
1)B(g, θ )

(1.2)

Q−( f )(t, x, p) = a2

p0

∫
R3

d3p1

p10

∫
S2+

dωF−( f ) f (t, x, p) f (t, x − aω, p1)B(g, θ )
(1.3)
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where f = f (t, x, p) is a distribution function of a one-particle classical relativis-
tic gas without external forces, a is a diameter of hard sphere (a > 0) and F± are
two functionals on a Banach space M defined in Sec. 2. More precisely speaking,
F± are high-density collision frequencies which are physically defined by a ge-
ometrical factor Y that depends on the space density ρ(t, x) = ∫

R3 f (t, x, p) d3p
at the time t and the point of contact [e.g. F+ = Y (ρ(t, x + aω/2)) and F− =
Y (ρ(t, x − aω/2))]. The other different parts in Eqs. (1.2) and (1.3) are explained
below.

p and p1 are dimensionless momenta of two colliding particles immedi-
ately before collision while p′ and p′

1 are dimensionless momenta after colli-
sion; p0 = (1 + |p|2)1/2 and p10 = (1 + |p1|2)1/2 are the dimensionless energy of
two colliding particles immediately before collision while p′

0 = (1 + |p′|2)1/2 and
p′

10 = (1 + |p′
1|2)1/2 are the dimensionless energy after collision. R3 is a three-

dimensional Euclidean space and S2
+ = {ω ∈ S2 : ω(p/p0 − p1/p10) ≥ 0} a sub-

set of a unit sphere surface S2. B(g, θ ) is given by B(g, θ ) = gs1/2σ (g, θ )/2,
where σ (g, θ ) is a scattering cross section, s = |p10 + p0|2 − |p1 + p|2, g =√

|p10 − p0|2 − |p1 − p|2/2, θ is the scattering angle defined in [0, π ] by cos θ =
1 − 2[(p0 − p10)(p0 − p′

0) − (p − p1)(p − p′)]/(4 − s). Obviously, s = 4 + 4g2.
ω = (cos ψ sin θ, sin ψ sin θ, cos θ ) varies on S2

+, where 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π .
Put p′ = p + qω and p′

1 = p − qω. Then, by using a similar derivation as given
by Glassey and Strauss(11) for the relativistic Boltzmann equation, we have

q ≡ q(p, p1, ω) = 2(p0 + p10)p0 p10[ω(p1/p10 − p/p0)]

(p0 + p10)2 − [ω(p + p1)]2
, (1.4)

g/s1/2 = 8
(p0 + p10)2|ω(p1/p10 − p/p0)|
{(p0 + p10)2 − [ω(p + p1)]2}2

. (1.5)

Here the scattering angle θ can be regarded as a function of the variables p, p1

and ω, i.e., θ ≡ θ (p, p1, ω). p′ and p′
1 are bounded for bounded pre-collisional

momenta and lie on an ellipsoid when they are plotted in a plane, see detail
explanation in Ref. 1.

The Moller velocity is defined as vM = gs1/2/(p0 p10), thus it can be
found that v2

M = |p/p0 − p1/p10|2 − |p × p1/(p0 p10)|2 and that vM ≤ |p/p0 −
p1/p10|.

As a comparison the relativistic Boltzmann equation is the relativistic Enskog
equation with the factor a2 F± constant and the diameter a equal to zero in
the density variables. Boltzmann’s equation provides a successful description for
dilute gases and is no longer valid when the density of the gas increases. The
Enskog equation proposed by Enskog(8) in 1922 is a modification of the Boltzmann
equation to explain the dynamical behavior of the density profile of a moderately
dense gas. It is thus a suitable idea that the relativistic Enskog equation is used to
model a hard sphere relativistic gas.
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There are many results about the relativistic Boltzmann equation, such as
global existence proof of Dudyński and Ekiel-Jeżewska(6,7) and properties of the
relativistic collision operator given by Glassey and Strauss,(10) and background
information of the classical Enskog equation may be found in Refs. 2, 8, 14. An
existence and uniqueness theorem has been given by Galeano et al.(12) for the
global solution to the relativistic Enskog equation with data near the vacuum for a
hard sphere gas. In their theorem (see Theorem 3.2 in Ref. 12), a set MR is defined
by MR = { f ∈ M : || f || ≤ R} with

R2 < β4|v|/(16π2cLa) (1.6)

and an initial datum f0 satisfies

|| f0|| < Reβ|x |2/2, (1.7)

where M is defined by

M =
{

f ∈ C([0,∞) × R3 × R3) :
there exists c > 0 such that

| f (t, x, v)| ≤ ce−β(
√

1+|v|2+|x+tv|2)

}

with a norm

|| f || = sup
t,x,v

{
eβ(

√
1+|v|2+|x+tv|2)| f (t, x, v)|},

c, L , a and β are positive constants, t is a time variable in [0,∞), x and v are
space and momentum variables in R3 respectively. These assumptions imply that
MR is an empty set and that none of the initial datum f0 occurs. Below let us
prove this claim. We first prove that MR is an empty set. Assume that MR is not an
empty set. Then there exists a function f in MR such that || f || ≤ R. Thus R ≥ 0.
By assumption (1.6), we know that

R <
√

β4|v|/(16π2cLa). (1.8)

Since v is a momentum variables in R3, by setting v = 0, (1.8) shows that R < 0
as v = 0. This is in contradiction with R ≥ 0. Hence MR is an empty set. Next, we
show that none of the initial datum f0 occurs. Assume that there exists a function
f0 satisfying (1.7). It can be known from (1.7) that R > 0. By (1.6), (1.8) then
follows. Since v is a momentum variables in R3, by letting v = 0, (1.8) shows that
R < 0 as v = 0. This is in contradiction with R > 0. None of the initial datum
f0 hence occurs. If (1.6) and (1.7) are replaced with R2 ≤ /β4|v|/(16π2cLa) and
|| f0|| ≤ Reβ|x |2/2 respectively, then MR = {0} and f0 = 0. Thus one can deduce
that a unique solution to the relativistic Enskog equation in their theorem is in fact
zero. Hence this result is also trivial. Notice that v is a variable in R3 and that
(1.6) holds for all v in R3. If |v| in (1.6) is replaced with a positive constant v0,
that is, (1.6) is changed as R2 < β4v0/(16π2cLa), then the problem is non-trivial.
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Recently, global existence of mild solutions has been proved by Glassey(9) for the
relativistic Boltzmann equation with near-vacuum data and many relevant papers
of both classical and relativistic cases can be found in the reference. Now there is
not yet this result for the relativistic Enskog equation. The aim of this paper is to
extend this result into the case of the relativistic Enskog equation. In Sec. 2 two
hypotheses of the relativistic collision kernel are given and a Banach space and
its operators are constructed. Then an existence and uniqueness theorem of global
mild solution to the relativistic Enskog equation with near-vacuum data is given
in Sec. 3.

2. HYPOTHESES AND OPERATORS

Let us begin by assuming that there is a positive function m(x, p) such
that a non-negative function B(g, θ ) = gs1/2σ (g, θ )/2 satisfies two hypotheses as
follows:

1

p0

∫ t

0
dτ

∫
R3

d3p1

p10

∫
S2+

dωm(x + τp/p0 − τp′/p′
0, p′)

× m(x + aω + τp/p0 − τp′
1/p′

10, p′
1)B(g, θ ) ≤ m(x, p)K , (2.1)

1

p0

∫ t

0
dτ

∫
R3

d3p1

p10

∫
S2+

dωm(x − aω + τp/p0 − τp1/p10, p1)B(g, θ ) ≤ K .

(2.2)

for any x ∈ R3, p ∈ R3, t ∈ R+ and some positive constant K . It can be known
from the recent work of Glassey(9) that there exist two such functions m(x, p) and
B(g, θ ) satisfying (2.1) and (2.2). For exampe, as given by Glassey,(9) we assume
that

m(x, p) = (1 + |x × p|)−(1+δ)/2e−p0 , (2.3)

σ ≡ σ (p, p1, ω) = |ω(p1 × p)|σ̃ (ω)/[p10g(1 + g2)δ+1/2], (2.4)

for any fixed δ ∈ (0, 1), where σ̃ (ω) is a nonnegative, bounded and continuous
function such that

∫
S2+

σ̃ (ω)/(1 + |zω|) dω ≤ c0|z|−1 for some positive constant
c0 and every nonzero element z ∈ R3. Thus a similar integral estimate to that
developed by Glassey(9) leads to the fact that (2.1) and (2.2) hold if m(x, p)
and B(g, θ ) are defined by (2.3) and (2.4) respectively. This indicates that our
assumptions (2.1) and (2.2) are valid for the relativistic Enskog equation.

Then we can construct a subset M of a Banach space C([0,∞) × R3 × R3),
which has the property that every element f = f (t, x, p) ∈ M if and only if there
exists a positive constant c such that f satisfies | f #(t, x, p)| ≤ cm(x, p), where
and below everywhere, f # is expressed as f #(t, x, p) = f (t, x + tp/p0, p) for
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any measurable function f on (0,+∞) × R3 × R3. It follows that M is a Banach
space when it has a norm || f || = sup

t,x,p
{| f #(t, x, p)|m−1(x, p)}. This space will be

used below.
The relativistic Enskog equation (1.1) can be also written as

d

dt
f #(t, x, p) = Q( f )#(t, x, p),

which leads to the following integral equation

f #(t, x, p) = f0(x, p) +
∫ t

0
Q( f )#(τ, x, p) dτ. (2.5)

A function f (t, x, p) is called global mild solution to the Enskog equation (1.1)
if f (t, x, p) satisfies the above integral equation (2.5) for almost every (t, x, p) ∈
[0,+∞) × R3 × R3. The definition of the term “mild solution” also appears in
the famous work of DiPerna and Lions(5) where they show a global existence proof
for the classical Boltzmann equation.

By (1.2) and (1.3), Q( f )#(t, x, p) can be rewritten as the difference between
the gain and loss terms of two other forms

Q+( f )#(t, x, p) = a2

p0

∫
R3

d3p1

p10

∫
S2+

dωF+( f ) f #(t, x + tp/p0 − tp′/p′
0, p′)

× f #(t, x,+aω + tp/p0 − tp′
1/p′

10, p′
1)B(g, θ ), (2.6)

Q−( f )#(t, x, p) = a2

p0

∫
R3

d3p1

p10

∫
S2+

dωF−( f ) f #(t, x, p)

× f #(t, x − aω + tp/p0 − tp1/p10, p1)B(g, θ ). (2.7)

According to (2.6) and (2.7), we can finally build a Banach space M̃ defined
by M̃ = { f # : f ∈ M} with a norm ||| f #||| = || f || and an operator J on M̃ by

J ( f #) = f0(x, p) +
∫ t

0
Q( f )#(τ, x, p) dτ, (2.8)

since F± can be in fact regarded as two functionals on M̃ .

3. EXISTENCE AND UNIQUENESS

Let MR be denoted by MR = { f ∈ M : || f || ≤ R} for any R ∈ R+, where
M is given in Sec. 2. We first have the following lemma:

Lemma 3.1. Suppose that the conditions (2.1) and (2.2) hold and that F±

are two functionals on MR such that |F±( f ) − F±(g)| ≤ L(R)|| f − g|| for any
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f, g ∈ MR where L(R) is a positive nondecreasing function on R+. Then
∫ t

0
|Q+( f )#(τ, x, p)|dτ ≤ C(R)m(x, p)|| f ||2,

∫ t

0
|Q−( f )#(τ, x, p)|dτ ≤ C(R)m(x, p)|| f ||2

for any f ∈ MR, where C(R) is a positive nondecreasing function on R+.

Proof: It can be first found from the assumption of the two functionals F± that
there exists a positive constant L̃(R) = L(R)R + |F+(0)| + |F−(0)| such that
|F±( f )| ≤ L̃(R) for any f ∈ MR . It follows from (2.6) and (2.7) that

∫ t

0
Q+( f )#(τ, x, p) dτ ≤ L̃(R)a2

p0

∫ t

0
dτ

∫
R3

d3p1

p10

∫
S2+

dω|| f ||2 (3.1)

× m(x + τp/p0 − τp′/p′
0, p′)m(x + aω + τp/p0 − τp′

1/p′
10, p′

1)B(g, θ ),

∫ t

0
Q−( f )#(t, x, p) dτ ≤ L̃(R)a2

p0

∫ t

0
dτ

∫
R3

d3p1

p10

∫
S2+

dω|| f ||2

× m(x, p)m(x − aω + τp/p0 − τp1/p10, p1)B(g, θ ). (3.2)

By (2.1) and (2.2), (3.1) and (3.2) give
∫ t

0
Q+( f )#(τ, x, p) dτ ≤ L̃(R)a2 K m(x, p)|| f ||2,

∫ t

0
Q−( f )#(τ, x, p) dτ ≤ L̃(R)a2 K m(x, p)|| f ||2.

Take C(R) = L̃(R)a2 K . It follows obviously that Lemma 3.1 holds. �

Then we can get the following theorem:

Theorem 3.2. Suppose that the conditions (2.1) and (2.2) hold and that F± are
two functionals on MR such that |F±( f ) − F±(g)| ≤ L(R)|| f − g|| for any f ,
g ∈ MR where L(R) is a positive nondecreasing function on R+. Then there exists
a positive constant R0 such that the relativistic Enskog equation (1.1) has a unique
non-negative global mild solution f = f (t, x, p) ∈ MR0 through a non-negative
initial data f0 = f0(x, p) when sup

x,p
{ f0(x, p)m−1(x, p)} is sufficiently small.

Theorem 3.2 shows that there exists a unique global mild solution to the rela-
tivistic Enskog Eq. (1.1) with the initial data near vacuum if a suitable assumption
of the scattering kernel is given. Below is our proof of Theorem 3.2.
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Proof: We first define a set M̃R by M̃R = { f # : ||| f #||| ≤ R, f # ∈ M̃|, where
M̃ is given in Sec. 2. By (2.8), we have

|J ( f #)|m−1(x, p) ≤ | f0(x, p)|m−1(x, p) + 2C(R)|| f ||2 ≤ R/2 + 2C(R)R2

(3.3)
for any f # ∈ M̃R and f0 with || f0|| ≤ R/2. Since C(R) is a positive nonde-
screasing function on R+, it follows that |||J ( f )#||| ≤ R for sufficiently small R.
Therefore J is an operator from M̃R to itself for sufficiently small R. Similarly, it
can be also found that J is a contractive operator on M̃R for some suitably small
R. Thus there exists a unique element f # ∈ M̃R such that f # = J ( f #), i.e., (2.5)
holds. It then follows from the same argument as the one in Ref. 3 (or see Refs. 9,
13, 15) that if f0(x, p) ≥ 0 then f (t, x, p) ≥ 0. Hence the proof of Theorem 3.2
is finished. �
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7. M. Dudyński and M. L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation.
J. Stat. Phys. 66(3/4) (1992).
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